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Quaternionic Hilbert space and colour confinement: I 

.l Rembielinski 
Institute of Physics, University of Lodz, 90-136 Lodz, Narutowicza 68, Poland 

Received 15 November 1978 

Abstract, A formalism based on quaternionic Hilbert spaces is developed to describe the 
coloured hadron states. The definition of the multi-particle states consistent with the 
quaternionic structure is given. This definition implies the selection rules equivalent to the 
colour confinement. It is found that for the symmetry group G = GFX SU(3) this theory is 
algebraically equivalent to the Fritzsch and Gell-Mann model. 

1. Introduction 

Recently the description of coloured quark states has been proposed by Gunaydin and 
Gursey (1973, 3 974), Gursey (1974,1976), Gunaydin (1973,1976) (see also Gursey et 
a1 (1976), Gursey and Sikivie (1976), Bucella et a1 (1977)) in the context of octonionic 
quantum mechanics. Gunaydin and Gursey suggest that the octonionic scheme is a 
realisation of the Fritzsch and Gell-Mann (1973) proposal with natural algebraic 
confinement of colour. Their arguments were based on the statement that the Birkhoff- 
von Neumann propositional calculus cannot be realised in octonionic Hilbert space 
(OHS). However Gunaydin et a1 (1978) have shown that in one-particle OHS the axioms 
of quantum mechanics remain unaffected. The analogous result was obtained by 
Rembielinski (1978) who has given a systematic description of multi-particle states. 
Moreover, Kositiski and Rembielinski (1978) have shown that theories based on the 
OHS have unacceptable features such as the unobservability of two-fermion states and 
mixing between observable and unobservable ones. Thus the applicability of 
octonionic theories to the description of the elementary particles is rather questionable. 

However, because of some interesting formal properties of the OHS theories it is 
possible that a suitable choice of scalar algebra and Hilbert-space geometry can lead to 
a natural realisation of some fundamental selection rules appearing in particle physics. 

In this paper it is shown that theories based on quaternionic Hilbert spaces (QHS) 
with complex geometry are free from the pathologies of octonionic theories. This holds 
because the selection rules for construction of the multi-particle states are less restric- 
tive. In particular, if the theory possesses the symmetry group G = GF x SU(3), then 
total algebraic colour confinement holds. The quark model based on this group is 
exactly equivalent to the Fritzsch and Gell-Mann model with natural quark 
confinement. 

The study of quaternion quantum mechanics was undertaken by a number of 
authors (Finkelstein et a1 1962, 1963, Jauch 1968, Emch 1963, 1972). However the 
QHS with quaternionic geometry was employed in these papers. 

0305-4470/80/01001S + OS$Ol.OO @ 1980 The Institute of Physics 15 



16 J Rembielihki 

The plan of this paper is as follows: In § 2 a short review of the QHS formalism is 
given, providing readers with the notion of the QHS with complex geometry. It is shown 
that this QHS is isomorphic to the complex Hilbert space (CHS) with appropriate 
structure essentially determined by the self-representation of the unitary group U(2). 
The construction of the multi-particle states ( 0  3) is based on this fact. In 8 4 the 
problem of definition of the physical states is considered. It is found that the selection 
rules for construction of the multi-particle states can be interpreted as algebraic 
colour-confinement. Finally the equivalence with the Fritzsch and Gell-Mann model is 
proved for GF x SU(3)c invariant theory. 

2. Quaternionic Hilbert space with complex geometry 

In this section a short review of the QHS formalism is given. In particular the 
isomorphism between QHS and CHS is explained. 

As is well known, there are three bilinear forms over the quaternionic algebra Q 
which define the norm 

I A ~  = ( a M ~ , ) 1 / 2  = ( A , " A , ) ~ / ~  

with the property 

IABI = ] A / .  /BI: 

( a )  the quaternionic scalar product AB E Q, 

AB = eo(awb,) + e(aob - boa - a  x b ) ;  

( b )  the complex scalar product 

$[AB + (z)] = A,"B, E %; 

( c )  the real scalar product 
- 

+(AB +(AB)] = a,6, ER. 

Here the real quaternionic basis eM is used with the multiplication rules elek = 
- eOSik  + Eikjej, eoe, = eweo = e,, = 0, 1 , 2 , 3 ;  i, k, j = 1 ,2 ,3 .  A real quaternion A can 
be represented as A = e,a,, a, E R, or in complex form (sympletic decomposition) as 
A = eoAo + elAl =_ e,A,, a = 0,1, where A. = eOaO + e3a3 and A I  = eOal - e3a2 belong 
to the subfield % of Q spanned by eo and e3 and % is isomorphic to the field of complex 
numbers. The conjugation operations are defined as follows: 

A =eoao-ea  = eoA: -elA1 

A" =eoao + elal -e2a2-e3a3 = eoA: +elA: 

A = e ~ a o - e l a l - e 2 a 2 + e 3 a 3 = e o A o - e l A l .  

In the following the complex scalar product ( b )  is denoted by (A, B )  =A:B,. The 
definition ( b )  implies useful rules 

(quaternionic conjugation), 

(complex conjugation), 

(A, B )  = (B ,  A)" = (B",  A"), 

(A, B + C )  = (A, B )  +(A,  C), 

{A, AB) = $(B +G)lA/', 
(A, B a )  = a(A,  B )  if a E 
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but in general (A, a B ) # a ( A , B ) .  Note that this complex bilinear form is invariant 
under transformations of the unitary group U(2). 

Because the notion of the QHS with complex geometry (to the author’s knowledge) 
was not used in the physical literature? it is introduced below by slight modification of 
the standard CHS postulates. 

Postulate 1 (algebraic) 

X is a linear vector space over the field of the quaternions, i.e. 
( a )  X is an additive abelian group 
( b )  the mapping XX Q + X is defined which satisfies 

( i )  distributive laws 

( f + g ) A  =fA+gA 

f ( A  + B )  =fA +fB  

( i i )  associativity for the quaternions 

( f A ) B  = f ( A B )  
(iii) feo = f. 

Here f, g E 2, A, B E Q and the right-handed multiplication convention is adopted. 

Postulate 2 (geometric) 

There exists a complex-valued scalar product (f, g )  defined for all f, g in X such that 

(a  1 ( f, g + ) = ( f, g + ( f, h 1 
( 6 )  (f, g)” = (g ,  f) 
( c )  (f,fA)=$(A+A)Ifl’ 

(4 (fa, g)  = “(f, g )  for (Y E % 

where Ifi’= (f, f) 3 0 and If1 = 0 is equivalent to 
f = O  

Postulate 3 (topological) 

X is complete. 

sympletic form 
From the above postulates it follows that a vector f~ X can be represented in the 

f = e$,, (Y = 0 , 1  ( l a )  

or in the Dirac notation by the ‘ket’ 

I f )  = e, If& ). (1b )  

Here fm = (ea ,  f) are %-valued and the possible extra indices are omitted. The scalar 

t In the physical context the QHS with quaternionic geometry was used. For relations between QHS’S with 
different geometries see Rembieliuski, ‘Notes on the structure of the octonionic and quaternionic Hilbert 
spaces’ (in preparation). 
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product has the form 

because (eor, e o )  = Sao and the 'bra' vectors are defined by (fl = If)' = (fa (f, I = If,)' = 
If:)'. The symbols (fa, gar) and (fa I gar) denotes the ordinary (complex) Hilbert-space 
scalar product. 

The linear manifold is defined as a closed subset of X containing together with the 
vectors f and g all their linear combinations with complex coefficients. The linear 
operator 9 is a %-linear mapping of the manifold .A c X into X. In an orthonormal 
basis { la)} it can be represented in the form 

Here T a b  = ( a  Izib) E % and note that in general l a ) z a b ( b l #  y a b l a ) ( b l  or l a ) ( b l T a b .  

However, the composition law for the linear operators K and 2 has the standard form 

The Hermitian and unitary operators are defined as usual. They can be represented by 
Hermitian and unitary complex matrices respectively. The projectors on the manifolds 
are Hermitian but in general do not commute with multiplication by quaternions. 
This holds because linear manifolds are not generally closed under the multiplication 
operation. 

It is easy to see that if we restrict ourselves to multiplication by complex scalars then 
postulates 1-3 reduce to the ordinary (CHS) ones. This fact and the definitions of the 
linear manifold and linear operator implies that the QHS is geometrically isomorphic to 
the CHS with appropriate structure: every vector if) = e, I f o r )  E QHS is associated with a 
two-component complex vector f= (k) E CHS. To every linear operator 3 acting in QNS 
there corresponds via relations (3) and (4) a linear operator in CHS. The scalar product 
in this CHS is obviously given by 

The eo and e3 are represented by 1 and i = (-1)"' respectively. 
It is not difficult to prove that the above-mentioned CHS can also be equipped with 

the algebraic structure of the QHS. To do this it is sufficient to define the operations E,, 
,U = 0, 1 , 2 , 3  which implement the multiplication of vectors by quaternionic units, and 
to determine the conjugation operations. This follows from the associativity of the 
quaternion algebra and postulate 1. From the form of the vector If) (equation 1) it 
follows that 
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Note that the quaternionic group with elements defined by the relations E, l , . .wn~f )  = 
If)e,,, . . . ec,, contains only eight operators *E, and that El = E3FC, E2 = FC. 

The geometrical correspondence between QHS and CHS implies via equations ( 5 )  
and (6 )  the following representation for E, and C, D, F: 

El  = iFC 
EO=( 1 0  ) = C O ,  

0 1  

E2 E FC, E3-(  O i  ')=icr0, 
(7) 

FE(  o i  )=-r2. 
-i 0 

Thus the QHS is isomorphic geometrically and algebraically to the CHS defined above. 
Note that the whole quaternionic structure is essentially generated by Eo, ES,  C, D and 
6;: 

Now let us explain role of the group U(2) in the structure of QHS. As is well known 
the quaternion algebra admits the SO(3) as group of automorphisms. On the other 
hand U(2) is the invariance group of the scalar product in QHS. The algebraic and 
geometric structure of the QHS is unaffected under the action of the intersection of these 
groups SO(3) n U(2) - U(1). A vector f transforms under this common subgroup U(1) 
as follows: 

The following fact is of great importance: the algebraic closure (under matrix 
multiplication) of the unitary matrices representing the operators *EO, iE3, *E1C = 
LtiF, *E2C = *F (see equations 7) and the matrices (i &) forms the self-represen- 
tation 2 of the group U(2). Thus the geometrical 'gauge' group U(2) also determines the 
algebraic structure of the QHS. 

Concluding, the whole structure of the QHS is essentially determined by the 
self-representation 5 of U(2) (and its adjoint 2 because C : 2 + 3). 

3. Tensor product of the quaternionic Hilbert spaces with complex geometry 

The results of the preceding section allow us to define in a consistent way the 'tensor' 
product of the QHS. It is reasonable to demand that the resulting Hilbert space has a 
similar structure, i.e. it carries simultaneously irreducible representations of the group 
U(2) and the quaternionic group with a common subgroup containing the elements 
*Eo, i E 3 ,  i E I C = ~ i F  and +E2C=LtF. More precisely, this indicates that the 
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product space is a direct sum of the irreducible (with respect to both groups) subspaces. 
Because the quaternionic group has only two- and one-dimensional irreducible 
representations?, the above condition is satisfied only for one-dimensional (scalar or 
phase) and two-dimensional (2 and 2) representations of the group U(2). Thus if theory 
based on QHS formalism possesses a symmetry group G then 

( a )  G must necessarily contain U(2) as subgroup 
( b )  the only admissible representations D of G fulfil the condition 

D ( G )  .1 U(2) = ( 0 1 ) 0 ( 0 2 ) 0 ( 0 2 )  (9) 

i.e. their U(2) content is a direct sum of the representations 1 (scalar or phase), 2 and 2. 
Consequently the consistent definition of the tensor product is given by 

% ' ~ X X Z X  . . .  x ~ " = n ( ~ e , O X Z O  . . .  0 ~ " )  (10) 

Here the Xk are the carrier spaces of the admissible representations of G. The operator 
l-I projects the ordinary tensor product (0) of %'k on the whole subspace of the 
admissible representations of the group G. Note that this operation is almost analogous 
to the symmetrisation or antisymmetrisation of the multi-particle boson or fermion 
states respectively. However, there is very important difference because the quater- 
nionic tensor product of some number of one-particle QHS cannot be obtained starting 
from one copy and multiplying successively by others. For example if G = U(2) then 

rI(20202) = 2 0 2 

whereas 

rI(20(2 0 2)) = 2 

and consequently 

% ' ~ x X ~ x % ' ~ = ~ Z 0 ~ ~ r Z # % ' ~ X ( % ' ~ X % ' ~ ) = ~ ~ .  

The multi-particle states can be generated from the vacuum by action of the 

(1 1) 

quaternionic product of the field operators. This product is defined by the formula 

4 x 4 x . . . x 4 =n(404 0.. . @I$)  

consistent with the tensor product definition (10). 

4. Quaternionic Hilbert space and colour confinement 

This section is devoted to a discussion of the following questions: 
1. The definition of the physical states in QHS. 
2. The interpretation of the structure group U(2) (denoted below by U(2),). 
3. The interpretation of the selection rules for admissible multi-particle states. 
4. The classification problem of the admissible representations of the semi-simple 

compact Lie groups. 

t For one dimensional (abelian) representations of the quaternionic group *Ew + 1 or *EO, *E3 + 1 and 
*E,, *Ez+  C or *Eo+ 1, +E3 + -1, *El --f C, *Ez+ -C. For a more exhaustive discussion of the product 
states see Rembielihkski, 'Algebraical confinement of coloured states' (in preparation). 
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4.1. The physical (that is observable) states can be identified with singlets of the 
SU(2), c U(2), only. 

In fact, if the one-particle state fa belongs to a doublet of U(2), then the two-particle 
state q5ap belongs to the admissible representation lI(2692) = lI(3 0 1) = 1, i.e. it forms 
a singlet of SU(2),. But this scalar is antisymmetrical, i.e. &@ - fa(l)fp(2) - fp(l)fa(2). 
Thus two-particle states &, do not in theory appear, because &a = 0. This feature is 
inadmissible for observable states. Consequently the doublets of U(2), cannot be 
associated with observable states. 

4.2. 

The unobservability of doublets of the group U(2), suggest that the SU(2), degrees of 
freedom should be identified with the colour. Consequently the structure group SU(2), 
should be a subgroup of the colour group. 

4.3. 

The definition (10) of the quaternionic tensor product implies strong selection rules on 
the acceptable multi-particle states. The multi-particle states belonging to the inad- 
missible representations of the symmetry group G do not in theory appear. Because the 
(admissible) doublets of SU(2), are also unobservable, the total algebraic colour 
confinement for the SU(2), group holds. It is to be expected that this mechanism works 
also for larger colour groups containing SU(2),. This problem is discussed in the 
following paper (Rembieliliski 1979a) (see also below). 

In conclusion the natural selection rules appearing in the QHS theories produce 
algebraic confinement of colour. 

4.4. 

The classification problem of the admissible representations of the (classical) semi- 
simple compact Lie groups is solved in the following paper (Rembieliliski 1980). The 
results obtained strongly favour SU(3) as the colour group. It is shown that only the 
groups SU(3n) where n is odd can be eventually identified with the colour group?. 
Furthermore, the only admissible representations of SU(3n) are one dimensional 
(singlet), and (3,3 dimensional given by the following Young table (and its conjugate) 
(figure A). Note that only for SU(3) is it the self-representation. The SU(3n) degrees of 
freedom are confined in all cases. 

l / n  

Figure A. 

Let us consider a theory based on the symmetry group G=GFxSU(3), (i.e. 
Gcolour = SU(3)) where GF is the flavour group and SU(3), 3 U(2),. The admissible 

t The exceptional groups were not considered in this paper. 
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representations of G have the form (DF, l ) ,  (DF, 3) and (DF, 3) where DF denotes an 
arbitrary representation of GF while 1 , 3  and 3 are the singlet, triplet and anti-triplet of 
SU(3), respectively. As follows from the above discussion the U(2), doublets are 
confined. Moreover the SU(3), triplets (antitriplets) are also confined. In fact 
I I (303)  = n(3 0 6 )  = 3 (6 is inadmissible) and anti-triplet 3 is antisymmetric, i.e. the 
two-particle states do not exist in this case. Consequently the observable particles can 
be associated only with the singlets of the SU(3),. Thus the algebraic confinement of the 
SU(3), colour holds, i.e. only the multiplets (DF, 1) are observable. In particular the 
quarks associated with SU(3), triplet are confined. So this theory is algebraically 
equivalent to the Fritzsch and Gell-Mann (1973) one. 
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